Banana Pancakes

Recipe group	Additional name	Diet factors
Breakfast, American	Breakfast Recipes	VG, NF

Combine dry ingredients.

Batter should be lumpy.

4 \begin{tabular}{c}

Capacity
measure

\hline 2 EP | Trim |
| :---: |
| loss |

\hline
\end{tabular}

On a greased flat top grill or large sauté pan, over medium heat, ladle batter into 4-inch circles and allow to cook 3-4 minutes. Add 3 slices of banana into pancake before flipping, then cook 3-4 minutes on other side, until golden brown. Pancakes can be held hot in hotel pans until ready for service.

Portion batter to cook.

Add banana slices before flipping.

Flip pancake and cook through.

Final- Banana Pancakes

Methods
For Service: Portion 3 pancakes onto a plate and serve with maple syrup and desired toppings.

RECIPE IMAGES

Banana Pancakes

ALLERGENS

WEIGHTS

Total weight
Size of portion

Raw	Cooking loss	Cooked	Loss when served	Final
8 lb 7.79 oz	0%	8 lb 7.79 oz	0%	8 lb 7.79 oz
11.32 oz		11.32 oz		11.32 oz

ADDITIONAL INFO

MEMO

NUTRITION INFORMATION

per portion

Energy nutritives		RDI	$\begin{array}{r} \text { \% of } \\ \text { energy } \end{array}$			Minerals		RDI	Vitamins	RDI
				Calories	RDI	Salt	0.79 g			
				$\begin{aligned} & 631.90 \mathrm{kcal} \\ & 2,643.86 \mathrm{~kJ} \end{aligned}$	31 \%	Salt	0.25 \%			
Total fat	16.48 g	21 \%	$\begin{array}{r} 23.06 \\ \% \end{array}$			Sodium	316.22 mg	14 \%	Vitamin	$2.23 \mu \mathrm{~g} 0$ \%
Saturated	1.47 g	7 \%	2.05 \%			Phosphorus	578.20 mg	46 \%	A	$1.36 \mu \mathrm{~g} 7$ \%
Monounsaturated	1.47 g	7 \%	12.67			Potassium	mg	24 \%	Vitamin D	
			\%			Iron				
Polyunsaturated	5.38 g		7.53 \%				2.46 mg	14 \%	Thiamine	0.31 mg 26 \%
Trans fatty acids	0.05 g		0.08 \%			Calcium	436.14 mg	34%	Riboflavir	0.33 mg 25 \%
Cholesterol	0.00 mg	0 \%				Zinc	0.86 mg	8 \%	Niacin	$1.89 \text { mg } 12 \text { \% }$
Linolenic acid	2.97 g		4.16 \%			Magnesium Iodine Selenium Copper	$\begin{array}{r} 61.00 \mathrm{mg} \\ 0.00 \mu \mathrm{~g} \\ 33.97 \mu \mathrm{~g} \\ 0.29 \mathrm{mg} \end{array}$	$\begin{array}{r} 15 \% \\ 0 \% \\ 62 \% \\ 32 \% \end{array}$	Vitamin B6	0.35 mg 21 \%
Alpha-linolenic acid	$1,226.89 \mathrm{mg}$		1.72 \%						Vitamin 1.26 g 52 \%	
Total Carbohydrate	108.72 g	40 \%	69.91						B12	1.26 gg 52 \%
			\%						Folate	$0.00 \mu \mathrm{~g} \quad 0 \%$
Sugars total	21.72 g	43 \%							Vitamin	$6.01 \mathrm{mg} \mathrm{7} \mathrm{\%}$
Added sugar	0.00 g	0 \%	0.00 \%						C	
Lactose	0.00 g								Vitamin	2.50 mg 17 \%
Fiber	5.75 g	21 \%	1.74 \%						E	
Organic acids	0.00 g		0.00 \%						Vitamin	$10.58 \mu \mathrm{~g} \quad 9 \%$
Sugar alcohol	0.00 g		0.00 \%						K	
Starch	3.69 g		2.37 \%							
Protein	14.15 g	28 \%	9.10 \%							
Alcohol	0.00 g		0.00 \%						Others	
									Water	175.76 g

PERCENTAGE OF ENERGY

Total fat (23.1 \%)Carbohydrates (69.9 \%)
Protein (9.1 \%)
Organic acids (0.0 \%)
Sugar alcohol (0.0 \%)
Alcohol (0.0 \%)
Fiber (1.7 \%)

CO2

Comparable values

Though the reported CO2 emissions represent a major part of the actual emissions, they do not make up the whole amount. Rather than comparing the absolute values, we recommend comparing the portions in relation to each other. The CO2 emissions are based on the size of the portions and the average climate impact of the ingredients, but they do not take into account the general climate impact allocated for all the portions in restaurant services or the climate impact caused by the manufacturing. The average CO 2 emission values have been calculated from the JAMIX sample database, which contains different types of recipes.

